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INTRODUCTION

The most common failures of buried water 
pipes are their cracks, fractures, perforations and 
sealing blows (Kwietniewski and Rak, 2010). Re-
gardless of the causes and type of these failures, 
they result in an uncontrolled outflow of water 
from the pipe. The velocity of the water flow can 
be high enough to wash out solid particles from the 
soil matrix, i.e. to cause the suffosion. Leakages 
of water from the water pipes are among the main 
causes of suffosion in urbanized areas (Khomenko, 
2009). Moreover, they occur in all water networks 
worldwide throughout the entire period of their op-
eration, and are difficult to predict (Kwietniewski 
and Rak, 2010). The consequence of suffosion is 
the formation of the empty spaces below the soil 
surface, which may lead to the collapse of the sur-
face, as well as the formation of so-called of suffo-
sion holes (Suchorab et al., 2016). Suffosion result-
ing from the water leakage from the buried water 

pipes is therefore a dangerous phenomenon, espe-
cially in urbanized areas, characterized by a rela-
tively high density of infrastructure. Water supply 
systems are usually located in a road lane; therefore, 
in the event of a leak, mainly road users are at risk of 
the effects of suffosion. Leakages from water pipes 
also pose a threat to the stability of various types 
of infrastructure, which is due to the possibility of 
disturbing their subgrades by flowing water, e.g. the 
subgrade under the foundation of a building or sand 
subgrade under a pipeline. Therefore, it seems to be 
important to determine the size of the so-called pro-
tection zone, i.e. the area around a potential leak, 
within which, in the event of a water pipe failure, 
water flow through the ground would be possible 
(Iwanek et al., 2019). The protection zone determi-
nation requires an analysis of the location of the suf-
fusion holes, taking into account their distance from 
the leak site and their location on the soil surface. 
The previous research has shown that the location 
of the suffosion holes around the leak is random 
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(Iwanek, 2021). The set made of suffosion holes 
creates a certain geometric figure that is difficult to 
describe using the classical concepts of Euclidean 
geometry. This is the feature of many naturally 
occurring structures (Mandelbrot, 1982). To de-
scribe these types of structures, both natural (e.g. 
soil medium – Ghanbarian et al., 2013, Xu, 2015) 
and those resulting from human activity (e.g. pipe 
systems in water supply networks – Kowalski et 
al., 2014, 2015, Iwanek et al. 2020), it is often pos-
sible to use the fractal geometry. According to the 
definition given by Mandelbrot (1982), a fractal 
is an object composed of parts similar at least ap-
proximately to the whole object. This definition 
describes the basic property of fractals, which is 
self-similarity. The Mandelbrot’s method of de-
scribing fractals based on self-similarity, although 
relatively frequent in the literature (e.g. Oleschko, 
2000, Khabbazi et al., 2015), is not a strict defi-
nition of fractals. One of the existing methods of 
defining fractals in the mathematical sense is the 
use of iterated function system (IFS) (Barnsley 
et al., 2005, Martyn, 2011). Fractals can be con-
structed using a system of iterated functions the 
form of the set { f 1,..., f k}, where f i : X → X is a 
contraction for i = 1,..., k, while X – a closed sub-
set of n-dimensional Euclidean space n. IFS in the 
above-mentioned form determines the Hutchinson 
operator (1981), defined on a compact and non-
empty subset S of set X as (Barnsley, 2012): 

𝐻𝐻(𝑆𝑆) =⋃𝑓𝑓𝑖𝑖
𝑛𝑛

𝑖𝑖=1
(𝑆𝑆) (1) 

 

{
𝐻𝐻0(𝑆𝑆) = 𝑆𝑆 

𝐻𝐻𝑘𝑘(𝑆𝑆) = 𝐻𝐻(𝐻𝐻𝑘𝑘−1(𝑆𝑆)), 𝑘𝑘 ≥ 1
 (2) 

 
𝐴𝐴𝐴𝐴 = 𝑙𝑙𝑙𝑙𝑙𝑙

𝑘𝑘→∞
𝐻𝐻𝑘𝑘 (𝑆𝑆) (3) 

 

{
 
 

 
 𝑊𝑊1 =⋃𝑤𝑤1𝑖𝑖

𝑠𝑠1

𝑖𝑖=1
, 𝑠𝑠1 ∈  𝑁𝑁 

𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛−1 ∪⋃𝑤𝑤𝑛𝑛𝑛𝑛
𝑠𝑠𝑛𝑛

𝑛𝑛=1
, 𝑠𝑠𝑛𝑛 ∈ 𝑁𝑁, 𝑛𝑛 ∈ 𝑁𝑁 and 𝑛𝑛 ≥ 2 

 (4) 

 

(1)

On the basis of the Banach fixed-point theorem 
(e.g. Palais, 2007), the iteration of the Hutchinson 
operator converges to the unique attractor AT (an 
attractor is a set to which the trajectories starting 
in different regions of the space go). The attrac-
tor AT can be described for the IFS system using a 
recursive sequence of the form:

 

𝐻𝐻(𝑆𝑆) =⋃𝑓𝑓𝑖𝑖
𝑛𝑛

𝑖𝑖=1
(𝑆𝑆) (1) 

 

{
𝐻𝐻0(𝑆𝑆) = 𝑆𝑆 

𝐻𝐻𝑘𝑘(𝑆𝑆) = 𝐻𝐻(𝐻𝐻𝑘𝑘−1(𝑆𝑆)), 𝑘𝑘 ≥ 1
 (2) 

 
𝐴𝐴𝐴𝐴 = 𝑙𝑙𝑙𝑙𝑙𝑙

𝑘𝑘→∞
𝐻𝐻𝑘𝑘 (𝑆𝑆) (3) 

 

{
 
 

 
 𝑊𝑊1 =⋃𝑤𝑤1𝑖𝑖

𝑠𝑠1

𝑖𝑖=1
, 𝑠𝑠1 ∈  𝑁𝑁 

𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛−1 ∪⋃𝑤𝑤𝑛𝑛𝑛𝑛
𝑠𝑠𝑛𝑛

𝑛𝑛=1
, 𝑠𝑠𝑛𝑛 ∈ 𝑁𝑁, 𝑛𝑛 ∈ 𝑁𝑁 and 𝑛𝑛 ≥ 2 

 (4) 

 

(2)

The attractor AT is the limit of the sequence 
above, which can be written as:

 

𝐻𝐻(𝑆𝑆) =⋃𝑓𝑓𝑖𝑖
𝑛𝑛

𝑖𝑖=1
(𝑆𝑆) (1) 

 

{
𝐻𝐻0(𝑆𝑆) = 𝑆𝑆 

𝐻𝐻𝑘𝑘(𝑆𝑆) = 𝐻𝐻(𝐻𝐻𝑘𝑘−1(𝑆𝑆)), 𝑘𝑘 ≥ 1
 (2) 

 
𝐴𝐴𝐴𝐴 = 𝑙𝑙𝑙𝑙𝑙𝑙

𝑘𝑘→∞
𝐻𝐻𝑘𝑘 (𝑆𝑆) (3) 

 

{
 
 

 
 𝑊𝑊1 =⋃𝑤𝑤1𝑖𝑖

𝑠𝑠1

𝑖𝑖=1
, 𝑠𝑠1 ∈  𝑁𝑁 

𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛−1 ∪⋃𝑤𝑤𝑛𝑛𝑛𝑛
𝑠𝑠𝑛𝑛

𝑛𝑛=1
, 𝑠𝑠𝑛𝑛 ∈ 𝑁𝑁, 𝑛𝑛 ∈ 𝑁𝑁 and 𝑛𝑛 ≥ 2 

 (4) 

 

(3)

The attractor described in this way is often a 
fractal, but it can also be an object without fractal 
features, called an IFS attractor (Barnsley et al., 

2005, Gdawiec and Kotarski, 2008, Martyn, 2011). 
The fractals described as attractors are determinis-
tic fractals, characterized by strict self-similarity. 
The process of their construction, consisting in re-
peating the same actions based on a strictly devel-
oped algorithm, is carried out infinitely (Falconer, 
2014). Many fractals have some degree of self-
similarity, i.e. they are made up of parts that re-
semble the whole, but the geometrical similarity is 
not strict. Such fractals (sometimes called proba-
bilistic – e.g. Nowak, 1992, or random – e.g. Rata-
jczak, 1998) are characterized by approximate or 
statistical self-similarity (Falconer, 2014, Hassan 
and Kurths, 2002, Barnsley et al., 2005). Statis-
tical self-similarity mainly concerns the fractals 
occurring in nature – e.g. mountain ranges, river 
systems, clouds, tree branches or blood vessel sys-
tems. The process of constructing a fractal reflect-
ing a natural object cannot be carried out indefi-
nitely, there is a lower and an upper limit (Pfeifer, 
1984), and the addition of subsequent elements of 
the set is random (Nowak, 1992). 

Due to the large variety of sets commonly con-
sidered as fractals, with the simultaneous lack of 
a single mathematical definition of fractals, some 
common features have been distinguished that can 
be used to assess the fractal nature of objects. In ad-
dition to the afore-mentioned self-similarity (feature 
No. 1), fractals are characterized by (Kudrewicz, 
2007, Kowalski, 2010, Falconer, 2014 ):
 • non-trivial (complicated) structure at every 

scale (feature no. 2),
 • recursive construction procedure – the same 

steps are repeated in subsequent steps (feature 
no.3),

 • necessity to use recursive relationships in the 
analytical description (feature No. 4),

 • difficulty of description with the use of the 
terms of classical geometry (feature No. 5),

 • difficulty of geometric description of the con-
stituent parts of a set – almost every infinitely 
small element consists of a large number of 
other elements separated by spaces of variable 
dimensions (feature No. 6).

It should be emphasized that not every fractal 
has all of the above-mentioned features. It is enough 
for a set to meet most of the conditions to be consid-
ered as a fractal. This is especially true of probabi-
listic fractals with statistical self-similarity (Falcon-
er, 2014). The aim of this article was to evaluate the 
possibility of using fractal geometry elements to 
describe the location of the suffusion holes formed 
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after the failure of the buried water pipe. This de-
scription is needed to determine the dimensions of 
the previously defined protection zone, important 
for the safe use of water supply systems.

RESEARCH METHODOLOGY

To achieve the goal of the work, it was nec-
essary to:
1) Create geometric structures consisting of suf-

fosion holes formed on the soil surface after 
the failure of the buried water pipe, hereinafter 
referred to as the suffosion hole sets,

2) Carry out an analysis of the properties and the 
creation of the suffosion hole sets – checking 
whether these sets meet the requirements for 
fractal sets.

In order to collect the data for analysis – to 
create the suffosion hole sets – experimental stud-
ies were carried out involving the physical simula-
tion of a water pipe failure. Simulations of the out-
flow of water from the water pipe to the soil were 
carried out on a laboratory setup in the scale of 1:10. 
The construction of the setup was preceded by a di-
mensional analysis. The main element of the labora-
tory setup was a water supply pipe with an internal 
diameter of 20 mm, consisting of two equal length 
parts connected by a bell-and-spigot joint, laid in 
the compacted sandy soil in the box. The pipe was 
supplied with water from a reservoir, the height of 
which governed the water pressure in the pipe. Dur-
ing the flow of water, the bell-and-spigot joint on 
the pipe was unsealed. This resulted in a leak be-
tween the spigot end and the socket end with an 
area of 9.42 cm2, through which water flowed from 
the pipe into the soil and then onto the soil surface, 
creating suffosion holes. The remaining water that 
flowed through the pipe was disposed into the sew-
age system. The parameters of the soil used in the 
tests (degree of compaction, volumetric water con-
tent, saturated conductivity and particle-size dis-
tribution) were determined in the laboratory using 
standard procedures (PN-B-04481:1988).

Physical simulations of the water pipe failure 
were carried out for 7 hydraulic pressure heights H 
in the pipe: from 3.0 m H2O to 6.0 m H2O, every 
0.5 m H2O. The pressure was the only parameter 
that was varied during the tests. To determine the 
location of suffosion holes, the Cartesian coor-
dinate system was used. It was assumed that the 
coordinate system is on the soil surface, its origin 

is directly above the leak in the pipe, and the 
horizontal axis is parallel to the pipe. After each 
experiment, the number of the suffosion holes 
(n), their belongingness to a quadrant of the co-
ordinate system (q) and the distance between the 
farthest point of a suffosion hole from the origin 
(r) were determined. The suffusion holes obtained 
as a result of the laboratory tests created 7 sets 
(A÷ G) – each for a different amount of hydrau-
lic pressure in the pipe. Each of the 7 suffosion 
hole sets was created gradually. In consecutive 
steps, corresponding to successive repetitions of 
the experiment, next points were added to the set. 
The number of steps was limited – the experiment 
was repeated 7 times for each pressure level. The 
number of repetitions of the experiment for a 
given H value has been statistically determined 
as the minimum sample size for this experiment 
(Tucker, 2014). As a result, elements of each of 
the sets were suffosion holes created in all rep-
etitions of the experiment for a given pressure 
height in the pipe. The scheme of the formation 
of the suffosion holes set is shown in Figure 1 on 
the example of the set E (H = 5 m H2O).

The course of each replication of the experi-
ment for all H values was documented (photos 
and video) using 2 cameras. One of them was 
placed 1.5 m above the laboratory setup, directly 
above the leakage site. The second one was not 
fixed; it was used to take pictures from various 
places and distances. Using the documentation, 
the process of formation and construction of each 
of the suffosion hole sets was analyzed frame by 
frame. Moreover, it was evaluated how many 
holes are formed in each repetition of the experi-
ment and what number of holes occurs most of-
ten. Using the Student’s t-test at the significance 
level of 0.05, the hypothesis that the number of 
created holes is always equal to the number of 
holes most frequently occurring in the conducted 
experimental tests was verified. 

RESULTS AND DISCUSSION

The characteristics of the suffosion holes sets 
obtained in the laboratory tests are presented  
in Table 1. 

The sets presented in Table 1 differ in the 
number of suffosion holes n (from 9 for sets E and 
F to 18 for set C ) and the distance of the holes 
from the coordinate system origin r (from 7.47 
cm to 48.90 cm). All the holes in all sets occurred 
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Figure 1. Scheme of the formation of the set E for H = 5 m H2O; the suffosion holes are represented 
by the points belonging to the hole, located the farthest from the coordinate system origin

Table 1. Basic data on the suffosion hole sets (n – number of created ceiling openings, r – distance of the suffosion 
holes from the coordinate system origin, q – quadrant of the coordinate system)

File 
number

H  
m H2O

Data
Number of experiment repetition

1. 2. 3. 4. 5. 6. 7.

A 3.0

n 1 2 2 1 1 2 3

r, cm 47.30 44.64; 
48.90

16.43; 
16.45 37.30 16.22 38.91; 

32.53

36.27; 
38.37; 
34.10

q II II; II IV; IV I III I; I I; I; II

B 3.5

n 3 1 1 2 1 1 1

r, cm
41.51; 
43.32;
43.40

39.28 19.81 40.75; 
41.52; 10.48 27.86 10.01

q I; IV; IV III III IV; IV III II II

C 4.0

n 1 1 2 3 4 5 2

r, cm 31.39 8.27 11.72; 
9.28

44.30; 
46.30; 
41.83

44.53; 
46.48; 
47.12; 
45.09

38.42; 
39.42; 
39.34; 
44.99; 
41.08

33.18; 
29.02

q III II I; IV III; IV; IV I; IV; IV; IV II; II; III; 
IV; IV III; III

at a distance not exceeding 0.5 m from the place 
of leakage on the pipe (the coordinate system ori-
gin). The probability of water outflow onto the 
surface more than 0.5 m (i.e. under real condi-
tions more than 5 m) from the leakage place can 
therefore be considered equal to zero for the test 
conditions. The highest difference in the distance 

r within one set exceeded 30 cm (from 32.63 cm 
to 39.57 cm) for sets A÷F (Table 1). Only in the 
case of set G, the suffosion holes were located 
closer to the leakage place and the highest differ-
ence in the distance r was 5.17 cm. In each of the 
seven sets A÷G, the suffosion holes were located 
in all four quadrants of the coordinate system. It 
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follows that the location of suffosion holes is not 
obvious. The structure composed of the suffo-
sion holes is therefore a non-trivial object, which 
is one of the characteristics of fractals (a feature 
marked in the Introduction section as feature No. 
2). According to the research methodology, the 
suffosion hole sets were constructed gradually in 
subsequent steps (Fig. 1). The same actions were 
repeated in each step. Thus, the analyzed structure 
was subject to a recursive construction procedure, 
which is another feature of fractals (feature No. 
3). The process of formation of the analyzed geo-
metric structure, a special case of which is shown 
in Figure 1, can be written in a general form, us-
ing the formula (4):

 

𝐻𝐻(𝑆𝑆) =⋃𝑓𝑓𝑖𝑖
𝑛𝑛

𝑖𝑖=1
(𝑆𝑆) (1) 

 

{
𝐻𝐻0(𝑆𝑆) = 𝑆𝑆 

𝐻𝐻𝑘𝑘(𝑆𝑆) = 𝐻𝐻(𝐻𝐻𝑘𝑘−1(𝑆𝑆)), 𝑘𝑘 ≥ 1
 (2) 

 
𝐴𝐴𝐴𝐴 = 𝑙𝑙𝑙𝑙𝑙𝑙

𝑘𝑘→∞
𝐻𝐻𝑘𝑘 (𝑆𝑆) (3) 

 

{
 
 

 
 𝑊𝑊1 =⋃𝑤𝑤1𝑖𝑖

𝑠𝑠1

𝑖𝑖=1
, 𝑠𝑠1 ∈  𝑁𝑁 

𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛−1 ∪⋃𝑤𝑤𝑛𝑛𝑛𝑛
𝑠𝑠𝑛𝑛

𝑛𝑛=1
, 𝑠𝑠𝑛𝑛 ∈ 𝑁𝑁, 𝑛𝑛 ∈ 𝑁𝑁 and 𝑛𝑛 ≥ 2 

 (4) 

 

(4)

where: W1, Wn– a set of suffosion holes obtained 
in the first and n -th step of the structure 
formation, respectively, w1i– one of the 
points (i-th) forming the structure in the 
first step, wnj – one of the points (j-th) 
added to the structure in the last n-th step, 
n – number of steps corresponding to the 
number of the experiments repetitions, s1, 
sn – number of all suffosion holes created 
in the first and n-th step of the structure 
formation, respectively.

The formula (4) is a recursive relationship. 
Therefore, the structure created by a suffosion 
hole set has another feature of fractals – feature 
No. 4. A geometric figure that is a subset of the 
Euclidean space, after adopting a coordinate 
system, can be described by a system of classi-
cal equations or inequalities connecting the co-
ordinates of the points of the figure (Empacher 
et al., 1975). The analyzed structure – the suffo-
sion hole set – cannot be described in the above 
way, due to the randomness of the location of the 
suffosion holes, improved previously (Iwanek, 
2021), and also due to the fact that the number 
of holes obtained in each repetition of the ex-
periment was not obvious. During the tests, 1 
hole was obtained in 28 repetitions of the ex-
periment, 2 holes in 13 repetitions, 3 holes in 6 
repetitions, 4 holes in 1 repetition and 5 holes 
also in 1 repetition. Although the probability of 
obtaining 1 hole exceeds 50%, it is too low to 
assume at a significance level of 0.05 that 1 hole 
occurs in each repetition of the experiment (null 
hypothesis: n = 1). The calculations carried out 
with the use of the Student’s ttest showed that 
the hypothesis n = 1 should be rejected (Table 
2). Thus, the structure created by the suffusion 
hole set has one more feature of fractals – the 
difficulty of description using the concepts of 
classical mathematics (feature No. 5).

While analyzing the videos recorded in the 
laboratory showing the moment of water out-
flow on the soil surface, it was noticeable that 

Table 1. Cont. Basic data on the suffosion hole sets (n – number of created ceiling openings, r – distance of the 
suffosion holes from the coordinate system origin, q – quadrant of the coordinate system)

D 4.5

n 1 3 3 1 2 1 1

r, cm 30.67
30.68; 
28.00; 
39.94

47.04; 
45.53; 
44.36

35.56 42.38; 
41.08 38.99 7.47

q III III; III; III III; I; I IV III; I II IV

E 5.0

n 1 1 2 2 1 1 1

r, cm 10.60 12.15 10.84; 
12.56

40.20; 
39.46 39.67 42.40 43.23

q IV II III; III I; II II I I

F 5.5

n 1 1 2 1 1 2 1

r, cm 40.54 27.00 16.46; 
15.75 22.31 31.98 46.83; 

44.09 10.24

q I IV III; III III II III; III IV

G 6.0

n 2 2 1 1 3 1 1

r, cm 8.47; 
12.53

10.64; 
11.54 10.59 10.60

11.89; 
13.64; 
8.62

9.74 10.30

q IV; II I; IV III III III; I; IV II III
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– contrary to what the human eye could see – the 
water did not flow out on the soil surface simulta-
neously through the entire suffosion hole, but in 
some places of the hole it appeared first, creating 
a “mini-hole”. After a while equal to fractions of 
a second, another “mini-hole” appeared next to 
the previous one. The “mini-holes” became com-
ponents of the final form of the suffosion hole 
(Fig. 2). In this way, after zooming in on the im-
age, instead of one suffosion hole, usually several 
(always at least one) smaller component holes 
were visible. It would be possible to zoom in on 
the image until the water flowed out through the 
open soil pores and a moment later overcame the 
resistance of the solid particles, creating a “mini-
hole”. Thus, it can be said that almost every very 
small element of the analyzed structure consists of 
a number of other elements separated by spaces 
with variable dimensions. This is approximately 
the feature 6 of the fractals. The approximation is 
due to the fact that the mentioned elements are not 
smaller than the pore diameter of the soil, so they 
can be very small, but not infinitely small. The 
limitation of the size of the elements is the feature 

of probabilistic fractals. Moreover, after enlarging 
a fragment of a suffusion holes set, it is possible 
not only to see smaller and smaller elements of 
this set, but also to obtain an image similar to the 
whole. This means that the analyzed structure is 
characterized by self-similarity, which is consid-
ered to be the basic feature of fractals (feature No. 
1). However, this is not a strict geometric simi-
larity, but an approximate one – characteristic for 
probabilistic fractals (as in the case of the feature 
No. 6). The features of probabilistic fractals are 
revealed in the analyzed structure not only in the 
fact that its self-similarity is approximate and its 
components are not infinitely small. Characteristic 
for probabilistic fractals is also the fact that dur-
ing the process of the structure construction, the 
number of added suffosion holes is not the same in 
each repetition of the experiment and the location 
of the added holes is not precisely determined. 
Moreover, the number of consecutive steps in the 
process of the structure construction corresponds 
to the number of repetitions of the experiment in 
the laboratory, and therefore is limited, which is 
also a feature of probabilistic fractals.

Table 2. Evaluation of the statistical hypothesis n = 1
Mean n Expected n t-value Critical region CR Result

1.65 1 4.89 <2.011, + ∞) t-value ∈CR

Figure 2. a)-e) Frames of the selected video of the outflow of water onto the soil surface recorded 
during laboratory tests; arrows show “mini-holes”; f) Zoom in on the formed suffosion hole (2×)
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CONCLUSIONS

Conducting an analysis of the suffosion hole 
set formation process, determination of the sig-
nificance of a random distribution of suffosion 
holes, as well as analysis of photographic and vid-
eo documentation led to the conclusion that the 
geometric structure formed by a suffusion holes 
set created after a physical simulation of a wa-
ter pipe failure meets the conditions for fractals. 
It has the basic characteristic of fractals, which 
is self-similarity, and moreover, it is created on 
the basis of a recursive construction procedure, 
requires the use of recursive relationships in the 
analytical description, has a non-trivial structure, 
cannot be described by the concepts of classical 
geometry and each of its elements consists of 
other smaller elements separated by spaces with 
variable dimensions. Since the addition of sub-
sequent elements of the set is random, the con-
struction process is not carried out indefinitely, 
the components are not infinitely small, and the 
self-similarity is approximate, the structure has 
the features of probabilistic fractals.

Demonstrating that a suffosion hole set cre-
ates a structure with fractal features allows the 
use of fractal properties to determine the protec-
tion zone – the area around a potential leak, where it 
would be possible for water to flow in the ground in 
the event of damage or failure of the water pipe. It is 
a very important issue in terms of the safe operation 
of water supply systems. 
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